Health Risk Analysis of Respirable Dust Exposure Following the Implementation of Dust Supression System in the Mineral Ore Processing Industry

Authors

  • Arif Susanto Magister Terapan Keselamatan dan Kesehatan Kerja, Departemen Layanan dan Informasi Kesehatan, Sekolah Vokasi, Universitas Gadjah Mada
  • Nurulia Hidayah Magister Terapan Keselamatan dan Kesehatan Kerja, Departemen Layanan dan Informasi Kesehatan, Sekolah Vokasi, Universitas Gadjah Mada
  • Savitri Citra Budi Departemen Layanan dan Informasi Kesehatan, Sekolah Vokasi, Universitas Gadjah Mada
  • Lilik Dwi Setyana Sekolah Vokasi, Universitas Gadjah Mada

DOI:

https://doi.org/10.25311/keskom.Vol11.Iss3.2374

Abstract

This study aimed to assess the health risks associated with respirable dust exposure following the implementation of a dust suppression system. A cross-sectional quantitative design was employed, involving 30 workers from PTX’s based on NIOSH. Personal dust sampling was conducted using the NMAM0600 method. The results indicated that the average concentration of respirable dust was 0.4760mg/m³, below the threshold limit value (TLV) of 3 mg/m³ set by the ACGIH. Risk characterization using the risk quotient (RQ), RQ<1. Simulation using the MPPD model revealed that particles with a diameter of approximately 4 µm had the highest deposition rate in the thoracic region of the respiratory tract, potentially triggering inflammatory responses and pulmonary fibrosis. Despite the low current exposure levels, continuous monitoring and enhancement of dust control measures are recommended to prevent long-term health effects such as silicosis and COPD. The study emphasizes the importance of regular health surveillance, appropriate use of personal protective equipment, and adherence to the ALARA (As Low As Reasonably Achievable) principle to ensure occupational safety and health in mineral ore processing environments.

Downloads

Download data is not yet available.

References

[1] Schlünssen V, Mandrioli D, Pega F, Momen NC, Ádám B, Chen W, Cohen RA, Godderis L, Göen T, Hadkhale K, Kunpuek W, Lou J, Mandic-Rajcevic S, Masci F, Nemery B, Popa M, Rajatanavin N, Sgargi D, Siriruttanapruk S, Sun X, Suphanchaimat R, Thammawijaya P, Ujita Y, van der Mierden S, Vangelova K, Ye M, Zungu M, Scheepers PTJ. The Prevalences and Levels of Occupational Exposure to Dusts and/or Fibres (Silica, Asbestos and Coal): A Systematic Review and Meta-analysis. Environment International. 2023;178,107980. https://doi.org/10.1016/j.envint.2023.107980

[2] Lestari M, Fujianti P, Novrikasari N, Nandini RF. Dust Exposure and Lung Function Disorders. Respiratory Science. 2023;3(3):218-230. https://doi.org/10.36497/respirsci.v3i3.80

[3] American Conference of Governmental Industrial Hygiene (ACGIH). TLVs and BEIs, Based on the documentation of the threshold limit values for chemical substances and physical agents and biological exposure indices. Cincinnati, Ohio, The United States. 2025.

[4] Saurabh K, Chaulya SK, Singh RS, Kumar S, Mishra KK. Intelligent dry fog dust suppression system: an efficient technique for controlling air pollution in the mineral processing plant. Clean Technologiesand Environmental Policy. 2022;24:1037-1051. https://doi.org/10.1007/s10098-020-01991-z

[5] Xie Z, Huang C, Zhao Z, Xiao Y, Zhao Q, Lin J. Research Review and Prospect the Development of Dust Suppression Technology and Influencing Factors for Blasting Construction. Tunnelling and Underground Space Technology. 2022;125,104532. https://doi.org/10.1016/j.tust.2022.104532

[6] Susanto A, Putro EK, Kusnadi SNF, Santoso DRM, Manuel AA. Risk assessment of respirable dust exposure to workers in the mineral ore processing industry. The Indonesian Journal of Occupational Safety and Health. 2024;13(1):109-115. https://doi.org/10.20473/ijosh.v13i1.2024.109-115

[7] Susanto A, Yudhiantara MR, Kara P, Putro EK, Manuel AA, Hidayah N. Multiple Path Particulate Dosimetry Model Total Dust Among Mineral Ore Processing Workers. Jurnal Media Kesehatan Masyarakat Indonesia. 2025;21(1):56-65. https://doi.org/10.30597/mkmi.v21i1.42224

[8] Leidel NA, Busch KA, Lynch J. Occupational exposure sampling strategy manual. 1977. https://www.cdc.gov/niosh/docket/archive/pdfs/NIOSH-091/0091-010177-document.pdf S

[9] US Environmental Protection Agency (USEPA). Risk Assessment Guidance for Superfund: Human health evaluation manual. Washington: D.C. 1989.

[10] Mihelcic JR, Zimmerman JB. Chapter 6: Environmental Risk (2nd ed.). Environmental Engineering: Fundamentals, Sustainability, Design. Willey: United States. 2012.

[11] Soemirat J. Analisis risiko kesehatan lingkungan. UGM Press: Yogyakarta. 2013.

[12] Putro EK, Kusnadi SNF, Susanto A, Zannah M, Mahlisa R, Manuel AA. Penilaian risiko pajanan debu silika terhadap pekerja di industri pengolahan bijih mineral. Jurnal Kesehatan Vokasional. 2024;9(1):76-87. https://doi.org/10.22146/jkesvo.87667

[13] Brown JS, Gordon T, Price O, Asgharian B. Thoracic and respirable particle definitions for human health risk assessment, Particle and Fibre Toxicology. 2013;10(12). https://doi.org/10.1186/1743-8977-10-12

[14] Wippich C, Koppisch D, Pitzke K, Breuer D. Estimating nickel exposure in respirable dust from nickel in inhalable dust. International Journal of Hygiene and Environmental Health. 2021;238:113838. https://doi.org/10.1016/j.ijheh.2021.113838

[15] Asgharian B, Price O, Oberdörster GA. Modeling Study of the Effect of Gravity on Airflow Distribution and Particle Deposition in the Lung. Inhalation Toxicology. 2006;18(7):473-481. https://doi.org/10.1080/08958370600602009

[16] Asgharian B, Price O, Hofmann W. Prediction of particle deposition in the human lung using realistic models of lung ventilation. Journal of Aerosol Science. 2006;37(10):1209-1221.

[17] Miller FJ, Asgharian B, Schroeter JD, Price O. Improvements and additions to the Multiple Path Particle Dosimetry Model. Journal of Aerosol Science. 2016;99:14-26.

[18] Peixoto MS, de Oliveira Galvão MF, de Medeiros SRB. Cell death pathways of particulate matter toxicity. Chemosphere. 2017;188:32-48. https://doi.org/10.1016/j.chemosphere.2017.08.076

[19] Vanka, K. S., Shukla, S., Gomez, H. M., James, C., Palanisami, T., Williams, K., et al. (2022). Understanding the pathogenesis of occupational coal and silica dust-associated lung disease. European Respiratory Review, 31(165): 210250. https://doi.org/10.1183/16000617.0250-2021

[20] Liu, G., Cooley, M. A., Jarnicki, A. G., Borghuis, T., Nair, P. M., Tjin, G, et al. (2019). Fibulin-1c regulates transforming growth factor–β activation in pulmonary tissue fibrosis. JCI Insight, 4(16). https://insight.jci.org/articles/view/124529

[21] Perret, J. L., Plush, B., Lachapelle, P., Hinks, T. S. C., Walter, C., Clarke, P., Irving, L., Brady, P., Dharmage, S. C., Stewart, A. (2017): Coal mine dust lung disease in the modern era. Respirology, 22(4): 662-670. https://doi.org/10.1111/resp.13034

[22] Barton C. Fibrogenic Dusts, 935–948 dalam Hamilton & Hardy’s Industrial Toxicology, John Wiley & Sons, Ltd. 2015. https://doi.org/10.1002/9781118834015.ch92

[23] Adisesh A, Waters-Banker C. Causes, diagnosis, and progression of COPD following workplace exposure to vapours, gases, dust and fumes, Methods, 2, Q6. 2021.

Submitted

2025-10-12

Accepted

2025-10-22

Published

2025-11-30

How to Cite

1.
Susanto A, Hidayah N, Budi SC, Setyana LD. Health Risk Analysis of Respirable Dust Exposure Following the Implementation of Dust Supression System in the Mineral Ore Processing Industry. J Keskom [Internet]. 2025 Nov. 30 [cited 2025 Dec. 2];11(3):446-57. Available from: https://jurnal.htp.ac.id/index.php/keskom/article/view/2374