Analisis Risiko Kesehatan Pajanan Debu Respirabel Pasca Instalasi Dust Supression System di Industri Pengolahan Bijih Mineral
DOI:
https://doi.org/10.25311/keskom.Vol11.Iss3.2374Abstrak
Penelitian ini bertujuan untuk mengevaluasi risiko kesehatan akibat paparan debu respirabel setelah penerapan dust suppression system. Desain penelitian menggunakan pendekatan potong lintang, melibatkan 30 pekerja PTX berdasarkan NIOSH. Pengukuran personal menggunakan metode NMAM0600. Hasil menunjukkan bahwa konsentrasi debu respirabel berada di bawah nilai ambang batas (NAB) yang ditetapkan oleh ACGIH (3 mg/m³), rata-rata 0,4760 mg/m³, dan nilai risk quotient (RQ)<1. Simulasi menggunakan model MPPD menunjukkan bahwa partikel berukuran sekitar 4 µm memiliki potensi deposisi tertinggi di saluran pernapasan bagian bawah (thoracic), yang dapat memicu inflamasi dan pembentukan jaringan parut. Meskipun tingkat pajanan saat ini tergolong aman, pengendalian debu perlu dipertahankan dan ditingkatkan secara berkelanjutan untuk mencegah akumulasi jangka panjang yang berpotensi menimbulkan penyakit akibat kerja seperti silikosis dan PPOK. Penelitian ini merekomendasikan pemantauan berkala, pemeriksaan kesehatan rutin, penggunaan alat pelindung diri (APD) yang sesuai, serta penerapan prinsip ALARA (As Low As Reasonably Achievable) untuk menciptakan lingkungan kerja yang aman dan sehat.
Unduhan
Referensi
[1] Schlünssen V, Mandrioli D, Pega F, Momen NC, Ádám B, Chen W, Cohen RA, Godderis L, Göen T, Hadkhale K, Kunpuek W, Lou J, Mandic-Rajcevic S, Masci F, Nemery B, Popa M, Rajatanavin N, Sgargi D, Siriruttanapruk S, Sun X, Suphanchaimat R, Thammawijaya P, Ujita Y, van der Mierden S, Vangelova K, Ye M, Zungu M, Scheepers PTJ. The Prevalences and Levels of Occupational Exposure to Dusts and/or Fibres (Silica, Asbestos and Coal): A Systematic Review and Meta-analysis. Environment International. 2023;178,107980. https://doi.org/10.1016/j.envint.2023.107980
[2] Lestari M, Fujianti P, Novrikasari N, Nandini RF. Dust Exposure and Lung Function Disorders. Respiratory Science. 2023;3(3):218-230. https://doi.org/10.36497/respirsci.v3i3.80
[3] American Conference of Governmental Industrial Hygiene (ACGIH). TLVs and BEIs, Based on the documentation of the threshold limit values for chemical substances and physical agents and biological exposure indices. Cincinnati, Ohio, The United States. 2025.
[4] Saurabh K, Chaulya SK, Singh RS, Kumar S, Mishra KK. Intelligent dry fog dust suppression system: an efficient technique for controlling air pollution in the mineral processing plant. Clean Technologiesand Environmental Policy. 2022;24:1037-1051. https://doi.org/10.1007/s10098-020-01991-z
[5] Xie Z, Huang C, Zhao Z, Xiao Y, Zhao Q, Lin J. Research Review and Prospect the Development of Dust Suppression Technology and Influencing Factors for Blasting Construction. Tunnelling and Underground Space Technology. 2022;125,104532. https://doi.org/10.1016/j.tust.2022.104532
[6] Susanto A, Putro EK, Kusnadi SNF, Santoso DRM, Manuel AA. Risk assessment of respirable dust exposure to workers in the mineral ore processing industry. The Indonesian Journal of Occupational Safety and Health. 2024;13(1):109-115. https://doi.org/10.20473/ijosh.v13i1.2024.109-115
[7] Susanto A, Yudhiantara MR, Kara P, Putro EK, Manuel AA, Hidayah N. Multiple Path Particulate Dosimetry Model Total Dust Among Mineral Ore Processing Workers. Jurnal Media Kesehatan Masyarakat Indonesia. 2025;21(1):56-65. https://doi.org/10.30597/mkmi.v21i1.42224
[8] Leidel NA, Busch KA, Lynch J. Occupational exposure sampling strategy manual. 1977. https://www.cdc.gov/niosh/docket/archive/pdfs/NIOSH-091/0091-010177-document.pdf S
[9] US Environmental Protection Agency (USEPA). Risk Assessment Guidance for Superfund: Human health evaluation manual. Washington: D.C. 1989.
[10] Mihelcic JR, Zimmerman JB. Chapter 6: Environmental Risk (2nd ed.). Environmental Engineering: Fundamentals, Sustainability, Design. Willey: United States. 2012.
[11] Soemirat J. Analisis risiko kesehatan lingkungan. UGM Press: Yogyakarta. 2013.
[12] Putro EK, Kusnadi SNF, Susanto A, Zannah M, Mahlisa R, Manuel AA. Penilaian risiko pajanan debu silika terhadap pekerja di industri pengolahan bijih mineral. Jurnal Kesehatan Vokasional. 2024;9(1):76-87. https://doi.org/10.22146/jkesvo.87667
[13] Brown JS, Gordon T, Price O, Asgharian B. Thoracic and respirable particle definitions for human health risk assessment, Particle and Fibre Toxicology. 2013;10(12). https://doi.org/10.1186/1743-8977-10-12
[14] Wippich C, Koppisch D, Pitzke K, Breuer D. Estimating nickel exposure in respirable dust from nickel in inhalable dust. International Journal of Hygiene and Environmental Health. 2021;238:113838. https://doi.org/10.1016/j.ijheh.2021.113838
[15] Asgharian B, Price O, Oberdörster GA. Modeling Study of the Effect of Gravity on Airflow Distribution and Particle Deposition in the Lung. Inhalation Toxicology. 2006;18(7):473-481. https://doi.org/10.1080/08958370600602009
[16] Asgharian B, Price O, Hofmann W. Prediction of particle deposition in the human lung using realistic models of lung ventilation. Journal of Aerosol Science. 2006;37(10):1209-1221.
[17] Miller FJ, Asgharian B, Schroeter JD, Price O. Improvements and additions to the Multiple Path Particle Dosimetry Model. Journal of Aerosol Science. 2016;99:14-26.
[18] Peixoto MS, de Oliveira Galvão MF, de Medeiros SRB. Cell death pathways of particulate matter toxicity. Chemosphere. 2017;188:32-48. https://doi.org/10.1016/j.chemosphere.2017.08.076
[19] Vanka, K. S., Shukla, S., Gomez, H. M., James, C., Palanisami, T., Williams, K., et al. (2022). Understanding the pathogenesis of occupational coal and silica dust-associated lung disease. European Respiratory Review, 31(165): 210250. https://doi.org/10.1183/16000617.0250-2021
[20] Liu, G., Cooley, M. A., Jarnicki, A. G., Borghuis, T., Nair, P. M., Tjin, G, et al. (2019). Fibulin-1c regulates transforming growth factor–β activation in pulmonary tissue fibrosis. JCI Insight, 4(16). https://insight.jci.org/articles/view/124529
[21] Perret, J. L., Plush, B., Lachapelle, P., Hinks, T. S. C., Walter, C., Clarke, P., Irving, L., Brady, P., Dharmage, S. C., Stewart, A. (2017): Coal mine dust lung disease in the modern era. Respirology, 22(4): 662-670. https://doi.org/10.1111/resp.13034
[22] Barton C. Fibrogenic Dusts, 935–948 dalam Hamilton & Hardy’s Industrial Toxicology, John Wiley & Sons, Ltd. 2015. https://doi.org/10.1002/9781118834015.ch92
[23] Adisesh A, Waters-Banker C. Causes, diagnosis, and progression of COPD following workplace exposure to vapours, gases, dust and fumes, Methods, 2, Q6. 2021.
Unduhan
Telah diserahkan
diterima
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Jurnal Kesehatan Komunitas

Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright @2017. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-nc-sa/4.0/) which permits unrestricted non-commercial used, distribution and reproduction in any medium






































